Nemci Test Jet - Zgodovina

Nemci Test Jet - Zgodovina


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Nemško letalsko podjetje Heinkel je 27. avgusta preizkusilo prvo letalo na reaktivne pogone. Letalo, imenovano Heinkel HE 178, je dokazalo izvedljivost reaktivnih letal.


Izbijanje: evolucija potisnega sedeža

V kratkem času: Britanski pilot je maja 2009 izstopil iz letala Harrier, ki je pristal ob nesreči, v Kandaharju v Afganistanu.

Hitreje ko letijo letala, hitreje moramo iz njih pobegniti.

Če je nuja mati iznajdbe, je boj njen oče. Nekaj ​​več kot mesec dni po Pearl Harborju, ko so se ZDA z zamudo pripravljale na vojno, je Nemčija že preizkušala lovce na letalih.

Januarja 1942 je testni pilot družbe Heinkel Helmut Schenk letel s prototipom He-280 s štirimi impulzno-reaktivnimi motorji. Za vzlet niso zagotovili dovolj moči, zato je bil Heinkel privezan na vlečno letalo He-111. Na žalost je to posnelo toliko snega, da je Schenk, ko je dosegel 7900 čevljev in je posadka bombnika padla s težke vlečne vrvi, ostal zamrznjen do njegovega letala. Letenje, kaj šele pristanek, je bilo nemogoče, a na srečo je Heinkel delal tudi na drugi inovaciji. "Odvrgel sem nadstrešek in nato potegnil sprostitveno ročico za sedež," se je spomnil Schenk, "in so me vrgli iz letala, ne da bi prišli v stik z njim." Iz pilotske kabine ga je izstrelil sesalnik stisnjenega zraka in sedeža. Nepoškodovan je pristal s padalom, prvi človek, ki je pobegnil iz letala s potisnim sedežem.

Skoraj odkar so letala začela leteti, so ljudje razmišljali, kako najhitreje priti ven, ko odpovejo. Sistemi za evakuacijo s stisnjenim zračnim kablom in vrvico segajo v leto 1910. Septembra 1941 so Nemci preizkušali lutke s zadnjega sedeža Junkers Ju-87. Sedeži za zgodnji izmet so imeli težave samo pri čiščenju Stukove repne plavuti. Ker sta se hitrost letala in potrebna moč izstrelitve povečali, so zračne steklenice postale nepraktično težke, namesto tega je sedež letala He-162 uporabil kartušo s smodnikom. Domneva se, da je med vojno izstrelilo približno 60 pilotov Luftwaffeja, a koliko jih je dejansko preživelo, ni znano.


Prvi preizkus izstrelitvenega sedeža je bil iz položaja zadnjega strelca v Junkers Ju-87 leta 1941. (HistoryNet Archives)

V Veliki Britaniji med zasilnim pristankom v prototipu lovca, ki ga je oblikoval skupaj z irskim inženirjem Jamesom Martinom, testni pilot stotnik Valentine Baker ni mogel pravočasno rešiti. Martin je smrt svojega partnerja sprejel tako močno, da je njihovo družbo preusmeril v pobeg letalske posadke. Julija 1946 je zaposleni pri Martin-Bakerju Bernard Lynch izstrelil iz zadnje pilotske kabine Gloster Meteorja 3 pri 320 km / h in sčasoma naredil še 30 uspešnih izstrelkov. "Z inženirskega vidika," je povedal tiskovni predstavnik podjetja Brian Miller desetletja pozneje, "je bil potisni sedež razvit precej hitro in kmalu smo lahko ugotovili hitrosti in pospeške, ki smo jih potrebovali za čiščenje plavuti letala. Težava je bila v tem, da nihče ni vedel, kaj bi ti pospeški naredili za človeka. "

Zgodnji sedeži Martin-Baker bi vam lahko rešili življenje, lahko pa bi tudi končali letalsko kariero, kar odražajo letalska gesla "Spoznajte svojega izdelovalca v Martin-Bakerju" in "Martin-Baker Back Breaker". V enem letu pa so bili sedeži za izmet standardna oprema britanskih letal. To je rešilo življenje testnemu pilotu Jo Lancasterju, ki je 20. maja 1949 izstrelil iz letečega krila Armstrong Whitworth A.W.52, prvega britanskega izstrelitve v sili.

17. avgusta 1946 je narednik Larry Lambert zaslužil ugledni leteči križ z izstrelitvijo iz spremenjenega Northrop P-61 nad Wright Field, Ohio, pri 302 km / h. Ameriški proizvajalci letalstva so vsi hiteli oblikovati sedeže za izmet. V desetih letih pa so letala zmogla takšne hitrosti, da so sedeži komaj zdržali. Februarja 1955 je preizkusni pilot severnoameriškega letalstva George F. Smith na kontrolnem letu vzel tovarniško svež F-100A Super Sabre in pri 37.000 čevljih doživel popolno okvaro hidravlike. Ko je padel na 6500 čevljev, je "Hun" delal 1,05 Mach. Pri izstrelitvi je sila vetra dosegla 40-G pojem, s čimer je padel v nezavest. Tretjina njegovih žlebov je bila odtrgana, vendar se je samodejno sprožila. Smith je v bolnišnici preživel sedem mesecev, a je spet preživel, da je spet letel s F-100.


Gloster Meteor T.7 preizkusi izstrelitveni sedež Martin-Baker. Eden od dveh Meteorjev, ki jih družba uporablja za ta namen, WA638 je v petih desetletjih opravil več kot 500 poskusnih letov z izvrženim sedežem. (Martin-Baker)

V nasprotju s tem sedeži zahtevajo največjo moč pri ničelni hitrosti in višini, saj se letalo ne odmika in padala potrebujejo dovolj višine za odpiranje. Namesto da bi se zanašali na naboje smodnika, so sedeži z ničelno ničlo začeli uporabljati rakete za podaljšanje pospeška in zmanjšanje poškodb hrbtenice. Prvi testni subjekt z ničelno vrednostjo je bil Doddy Hay, katerega sedež Martin-Baker ga je leta 1961. odstrelil 300 metrov od tal. Konec leta 1965 je ameriški proizvajalec Weber Aircraft izdelal sedež brez ničel z raketnim motorjem, padalom in pištolo. komplet za preživetje, vključno z napihljivim splavom. Major rezervnih letalskih sil ZDA Jim Hall se je prostovoljno prijavil kot morski prašiček, pri streljanju pa je bil izpostavljen trajnih 14 G. Hall je pristal v bližnjem jezeru in se pojavil ter skomignil z rameni: "Močneje so me brcnili v rit."

Piloti so se izvrgli celo pod ničlo. Junija 1969 je poročnik Russ Pearson na svojem prvem nočnem pristanku med usposabljanjem nosilca letenja v južni Kaliforniji pripeljal svoj Vought A-7 Corsair II na ladjo USS ozvezdje izven središčne črte. Ujel je št. 3, vendar je letalo pri uvedbi odletelo z roba krova, zdrsnilo po žici in se potopilo v Pacifik. "V zgodovini pomorskega letalstva je le peščica pilotov poskušala, še manj pa preživela podvodni izmet," je kasneje zapisal. "... Obstajala je tudi možnost, da bi se izvrgel neposredno v Conniein jekleni trup ali še huje, v enega od njenih velikih propelerjev." Na srečo je njegova obrnjena želva Corsair izstrelila Pearsona navzdol in proti gosti vodi namesto tankemu zraku ne zelo globoko. Pojavil se je in reševalni helikopter ga je potegnil na varno.

Tri dni kasneje je bil isti helikopter izgubljen na morju s celotno posadko, ki ni imela sedežev za izmet. Lopatice rotorja nad glavo očitno ovirajo izmet. Ruski napadalci helikopterjev Kamov najprej razstrelijo rezila, Mil Mi-28 pa ima sedeže, ki streljajo vstran. Sovjeti pri zasnovi izmetnih sedežev nikoli niso zaostajali. Potem ko je njegov MiG-29 leta 1989 na letalskem sejmu v Parizu zaužil ptico, ga je sedež Zvezde K-36D pilota Anatolija Kvochurja izvrgel le 2,5 sekunde pred trkom. Na isti predstavi 10 let pozneje so K-36 rešili oba posadka lovca Sukhoi Su-30MKI, ki se je postavil na dnu prenizke zanke. V obeh primerih so se Rusi vrteli skoraj vodoravno na izredno nizkih nadmorskih višinah, vendar so vsi odšli. Pariški uradnik je sedež K-36 označil za "očitno najboljšega na svetu".

V ZDA so letalke predstavljale še en izziv za oblikovalce, ki so morali nadomestiti svojo manjšo težo, da bi se izognili hitrejšim in nevarnejšim pospeškom. Toda edina nevarnost, ki je ne morejo premagati, je ročaj, ki je bil vlečen prepozno. Oktobra 1994 je poročnica mornarice ZDA Linda Heid, po naključju druga ženska mornariška letalka, ki se je izvrgla, priča, da je prva pilotka lovca v službi, poročnica Kara Hultgreen, izgubila pretok zraka do levega sesalnika motorja svojega Grummana F-14 ob zadnjem približevanju prevozniku. Abraham Lincoln. "Zgrožen sem gledal, kako njeno letalo izgublja višino in se je začelo kotaliti v levo," se je spomnil Heid. "Policisti za pristanek so kričali:" Moč, moč, moč! "In nato zavpili, naj se posadka izvrže." Hultgreenov častnik za prestrezanje radarjev na zadnjem sedežu, poročnik Matthew Klemish, je izstopil, vendar se je 4 sekunde pozneje Tomcat prevrnil za 90 stopinj, Hultgreenin sedež pa jo je odstrelil v morje in jo ubil.

Ko sedeži za izmet odpovejo, odpovejo veliko. Julija 1991 je ob rutinskem preskakovanju Indijskega oceana sedež navigatorja/bombardirja podporočnika Keitha Gallagherja Grumman KA-6D nehote zažgal in ga delno izstrelil. Samo njegovo padalo, ki se je steklo nazaj, da se je ovijalo okoli repa letala, je preprečilo, da bi njegovo polzavestno telo razmahnilo v vetru ali umrlo zaradi nabijanja na nazobčano krošnjo med pristankom. Analiza po incidentu je pokazala, da se je 28-letni strelni mehanizem sedeža utrudil. Od takrat je vsak sedež mornarice podvržen rutinskim, načrtovanim pregledom.


Grumman KA-6D julija 1991 pristane na krovu USS Abraham Lincoln z navigatorjem/bombardirancem poročnikom Keithom Gallagherjem, ki je po naključnem napačnem zagonu sedeža zdrsnil v zadnjo kabino. (Mornarica ZDA)

Danes je ameriški sedež tretje generacije Advanced Concept Ejection Seat (ACES) II z baterijskim pogonom, računalniško krmiljen in tako pameten, da ob strelu pozna višino, držo in hitrost. Lahko prilagodi razporeditev droga in glavnega padca, da kompenzira te dejavnike, tudi če letalo leti obrnjeno le 140 metrov in ko je potnik nezavesten. Maja 1994 je pilot McDonnell Douglasa F-15C, kapetan John Counsell med simuliranim pasjim bojem nad Mehiškim zalivom zatemnil in prišel k zavesti, da bi ugotovil, da se njegov Eagle potaplja na 10.000 čevljev pri 1,14 maha. "Moral sem se enkrat odločiti - potegniti ročaj," je dejal. "Po tem je moralo 13 samodejnih funkcij odlično delovati, da sem lahko živel, in to so tudi storile." Pri tej hitrosti piha veter s silo več kot 1500 funtov na kvadratni čevelj. Counsell je zlomil levo nogo na petih mestih, mu raztrgal tri vezi v levem kolenu, zložil desno nogo čez ramo (raztrgal še tri vezi), zlomil levo roko in oba zlomil in izpahnil levo ramo, a ga je ACES spustil voda živa, kjer so ga dve uri pozneje pobrali.

Aprila 1995 sta kapetan Brian "Noodle" Udell in častnik orožnega sistema na zadnjih sedežih kapetan Dennis White letela z enim od štirih F-15E Strike Eagles v simuliranem nočnem bojnem usposabljanju 65 milj nad Atlantikom. Napačen zaslon z glavo navzgor je pokazal, da sta se obrnila za 60 stopinj, 10 stopinj navzdol, mimo 24.000 čevljev pri 400 vozlih. Udell je prepozno ugotovil, da sta dejansko na 10.000 čevljih in sta se s hitrostjo zvoka odpravila naravnost navzdol. Par je svoje sedeže ACES II izstrelil pri 3000 metrih in dosegel skoraj 800 km / h. Udell je padel v nezavest, njegovo desno koleno in leva roka sta izpahnjena, levi gleženj pa zlomljen. Po dolgi noči v vodi, štirih operacijah in šestih jeklenih vijakih na vsaki nogi se je 10 mesecev po nesreči vrnil v stanje letenja. Imel je srečo: veter je v trenutku ubil Belo.

Nadzvočne ravnine je lažje oblikovati kot nadzvočne sisteme za izmet. Trisedežni Mach 2 B-58 Hustler je za zaščito potnikov uporabil posamezne zaprte kapsule za pobeg. Njegova zamenjava, General Dynamics F-111, naj bi izvrgla celotno kabino, vendar so bili takšni sistemi tako zapleteni, dragi in težki, da so jih zavrgli.

Izmetni sedeži so rešili življenja vse do samega roba prostora. 16. aprila 1975 je bil kapitan Jon T. Little izločen med izstrelitvijo iz vohunskega letala Lockheed U-2R nad Pacifikom pri hitrosti 65.000 čevljev in 470 km / h. Nezavesten je padel 50.000 čevljev, preden se mu je padalo samodejno namestilo. "Potegnil sem ročaj za izmet," se je spomnil, "in naslednje, česar se spomnim, sem bil v vodi."

25. januarja 1966 sta preizkusni pilot Lockheeda Bill Weaver in zadnji sedež Jim Zwayer utrpela vžig v desnem motorju svojega SR-71 in takoj izgubila nadzor. "Nisem si mislil, da so možnosti preživetja pri izbruhu pri 3,18 maha in 78.800 čevljev zelo dobre," je dejal Weaver. “… Kasneje sem izvedel, da je bil čas od začetka dogodka do katastrofalnega odhoda z nadzorovanega leta le 2-3 sekunde. Še vedno sem poskušal komunicirati z Jimom in izgubil sem moč, podlegel izredno visokim g-silam. SR-71 je nato dobesedno razpadel okoli nas. Od tega trenutka sem bil ravno na poti. "

Weaverjeva obleka se je napihnila in preprečila, da bi mu vrela kri in ga veter raztrgal. Zaradi tanke atmosfere na svoji delovni višini Blackbird, ki leti hitreje od 2.000 km / h, naleti na moč vetra, ki ustreza približno 460 km / h spodaj, vendar je tudi zrak premajhen, da bi padalcu preprečil tako hitro vrtenje ali prevračanje, da bi utrpel poškodbe. Ker je Weaver nezavesten, je njegov sedež Lockheed RQ201 samodejno umaknil žleb za preprečevanje vrtenja in odtrgal glavni žleb na višini 15.000 čevljev, ko je prišel Weaver. Na žalost je Zwayer umrl zaradi zlomljenega vratu med razpadom letala.

Testni pilot Bill Park ga je potisnil na sam rob višine, hitrosti in sreče, saj je bil edini človek, ki je dvakrat izvrgel črno ptico. Julija 1964 so po preizkusnem letu Mach 3 njegove kontrole zaklenile pri pristopu do jezera Groom. Park je v 45-stopinjskem bregu izbil le 200 čevljev navzgor. Dve leti pozneje sta skupaj z zadnjim sedečem Rayom Torickom poskušala izdati vrhunsko nameščen dron D-21 pri 3,2 maha, ko se je podrl in prelomil Blackbird na pol. G-sile znotraj odseka nosnega nosu so Park in Toricka priklenile na svoja sedeža, ki nista mogla doseči niti ročic za izmet, dokler se ni upočasnila v nižjem, debelejšem zraku, kjer sta varno udarila in pristala v Pacifiku. Na žalost je Torickova tlačna obleka prevzela vodo in se utopil.

Toda to ni bil kriv njegov sedež. Danes samo Martin-Baker šteje več kot 7.500 življenj, ki so jih rešili njihovi potisni sedeži, med njimi več kot 3.300 Američanov. (Klub podjetja Ejection Tie Club je omejen na letalce, ki jih prihranijo sedeži. Člani po vsem svetu prejmejo značilno kravato, kravato, krpo, certifikat in člansko izkaznico.) Kljub temu se lahko potisni sedež, ki je nedvomno omogočil boj z reaktivnim curkom, sčasoma konča z opombo v zgodovini letalstva. Če revolucija brezpilotnih letal odpravi letalske posadke na krovu, bo to, kar so sedeli, postalo muzejska zanimivost.

Za nadaljnje branje pogosti sodelavec Don Hollway priporoča: Izvrzi!avtorja Bill Tuttle Izbijanje, uredil James Cross in ejectionsite.com.

Ta funkcija se je prvotno pojavila v izdaji julija 2018 Letalska zgodovina. Naročite se tukaj!


Nemci Test Jet - Zgodovina

Pred drugo svetovno vojno, leta 1939, so reaktivni motorji obstajali predvsem v laboratorijih. Konec vojne pa je pokazal, da so reaktivni motorji s svojo veliko močjo in kompaktnostjo v ospredju razvoja letalstva.

Mladi nemški fizik Hans von Ohain je pri Ernstu Heinkelu, specializiranem za napredne motorje, delal za razvoj prvega reaktivnega letala na svetu, eksperimentalnega Heinkel He 178. Prvič je poletel 27. avgusta 1939.

Na podlagi tega napredka je nemški oblikovalec motorjev Anselm Franz razvil motor, primeren za uporabo v reaktivnem lovcu. To letalo, Me 262, je izdelal Messerschmitt. Čeprav je bil med drugo svetovno vojno edini borec z letalom, je Me 262 zaradi velike porabe goriva preživel veliko časa na tleh. Pogosto so ga opisovali kot raco, ki sedi za zavezniške napade. ” Medtem je v Angliji Frank Whittle popolnoma sam izumil reaktivni motor. Britanci so tako razvili uspešen motor za še enega zgodnjega lovca na letala —the Gloster Meteor. Velika Britanija ga je uporabila za obrambo domovine, vendar zaradi pomanjkanja hitrosti ni bila uporabljena za boj proti Nemčiji.

Britanci so Whittlejevo tehnologijo delili z ZDA, kar je General Electricu (GE) omogočilo izdelavo reaktivnih motorjev za prvi ameriški reaktivni lovec, Bell XP-59. Britanci so še naprej razvijali nove reaktivne motorje po modelih Whittle, Rolls-Royce pa je leta 1944. začel delo na motorju Nene. Podjetje je Nenes prodalo Sovjetom in sovjetsko različico motorja, ki je dejansko poganjala reaktivni lovnik MiG-15. ki so se kasneje med korejsko vojno borili proti ameriškim lovcem in bombnikom.

Predaja Nemčije leta 1945 je razkrila velika vojna odkritja in izume. General Electric in Pratt & Whitney, še en ameriški izdelovalec motorjev, sta k pouku o nemščini dodala lekcije Whittlea in drugih britanskih oblikovalcev. Zgodnji reaktivni motorji, na primer motorji Me 262, so hitro pogoltnili gorivo. Tako je bil postavljen začetni izziv: izdelati motor, ki bi lahko zagotavljal velik potisk z manjšo porabo goriva.

Pratt & Whitney je to dilemo rešil leta 1948 z združitvijo dveh motorjev v enega. Motor je vključeval dva kompresorja, ki sta se vsak vrtela neodvisno, notranji pa je zagotavljal visoko kompresijo za dobro delovanje. Vsak kompresor je črpal moč iz svoje turbine, zato sta bili dve turbini ena za drugo. Ta pristop je pripeljal do motorja J-57. Komercialna letala in Boeing 707, Douglas DC-8 so z njim leteli. Eden od vidnih povojnih motorjev je leta 1953 začel delovati pri ameriških letalskih silah.

Človek za motorjem

Hans von Ohain iz Nemčije je bil oblikovalec prvega delujočega reaktivnega motorja, čeprav je bil za izum reaktivnega motorja zaslužen Britanec Frank Whittle. Whittle, ki je leta 1930 registriral patent za turboreaktivni motor, je to priznanje prejel, letalski preizkus pa je opravil šele leta 1941. Ohain se je rodil 14. decembra 1911 v Dessauu v Nemčiji. Med opravljanjem doktorskega dela na univerzi v Gottingenu je leta 1933 forumiziral svojo teorijo reaktivnega pogona. Po diplomi leta 1935 je postal mlajši asistent Roberta Wicharda Pohla, direktorja univerzitetnega fizikalnega inštituta.

Leta 1936 je Ohain pridobil patent za svoj turboreaktivni motor in se pridružil podjetju Heinkel v Rostocku v Nemčiji. Do leta 1937 je zgradil tovarniško preizkušen demonstracijski motor, do leta 1939 pa popolnoma delujoče reaktivno letalo He 178. Kmalu zatem je Ohain vodil gradnjo prvega popolnoma delujočega turboreaktivnega motorja s centrifugalnim pretokom He S.3B. Ta motor je bil vgrajen v letalo He 178, ki je 27. avgusta 1939 opravilo prvi polet na letalu na reaktivne pogone na svetu. Ohain je razvil izboljšani motor, He S.8A, ki so ga prvič leteli 2. aprila 1941. Ta motor dizajn pa je bil manj učinkovit od tistega, ki ga je zasnoval Anselm Franz, ki je poganjal Me 262, prvo operativno reaktivno lovsko letalo.

Ohain je prišel v Združene države leta 1947 in postal raziskovalni znanstvenik v letalski bazi Wright-Patterson, v vesoljskih raziskovalnih laboratorijih, v Wrightovem laboratoriju za letalski pogon in na raziskovalnem inštitutu Univerze v Daytonu.


Nacistična Nemčija 's 'Stealth ' Fighter: Zgodba o Ho 229

Ho 229 bi bil lahko ogromen nasprotnik na nebu druge svetovne vojne, vendar v resnici letalo še zdaleč ni bilo pripravljeno za množično proizvodnjo do konca vojne.

Zasnove letečih kril niso bile povsem nova ideja in so jih prej uporabljali tako pri jadralnih letalih kot pri letalih na pogon. Med drugo svetovno vojno je Northrop razvil lasten visoko zmogljiv bombnik letečega krila XB-35 za ameriško vojsko, čeprav ni uspel vstopiti v množično proizvodnjo. Kljub aerodinamičnim prednostim je pomanjkanje repa povzročilo, da so letala na krilih nagnjena k nenadzorovanim zavijanjem in zastojem.

Northrop Grumman je letos razkril, da razvija drugega letečega bombnika B-21 Raider, ki bo nasledil svojega B-2 Spirit. Vendar pa je par nemških bratov v službi nacistične Nemčije razvil prvo leteče krilo na reaktivne pogone-ki je bilo nesporno poimenovano "Hitlerjev nevidni borec".

Toda največja hitrost in doseg, ne skrivnost, je bila glavna motivacija letala v obliki netopirja.

(To se je prvič pojavilo leta 2016.)

Walter Horten je bil pilot lovca asa v nemški Luftwaffe, saj je med bitko za Veliko Britanijo kot krilec legendarnega Adolfa Gallanda dosegel sedem ubojev. Njegov brat Reimar je bil oblikovalec letal brez formalne letalske izobrazbe. V mladosti sta par oblikovala vrsto inovativnih jadralnih letal brez posadke.

Leta 1943 je vodja Luftwaffe Herman Goering postavil tako imenovano specifikacijo 3x1000 za letalo, ki je lahko letelo tisoč kilometrov na uro in nosilo tisoč kilogramov bomb z gorivom, ki je dovolj za prevoz tisoč kilometrov in nazaj-obenem pa je obdržal tretjino oskrba z gorivom za uporabo v boju. Takšno letalo bi lahko udarilo na cilje v Veliki Britaniji in prehitelo vse lovce, poslane, da bi ga prestregli.

Jasno je, da bodo novi turboreaktivni motorji, ki jih je razvila Nemčija, potrebni za doseganje tako velikih hitrosti letala. Toda reaktivni motorji so zelo hitro izgoreli, zaradi česar so bili napadi na bolj oddaljene cilje nemogoči. Zamisel bratov Horten je bila uporabiti obliko letečega krila-letalo brez repa, ki je tako aerodinamično čisto, da skoraj ne ustvarja zračnega upora. Takšen okvir bi za doseganje višjih hitrosti potreboval manj moči motorja in zato porabil manj goriva.

Zasnove letečih kril niso bile povsem nova ideja in so jih prej uporabljali tako pri jadralnih letalih kot pri letalih na motorni pogon. Med drugo svetovno vojno je Northrop razvil lasten visoko zmogljiv bombnik letečega krila XB-35 za ameriško vojsko, čeprav ni uspel vstopiti v množično proizvodnjo. Kljub aerodinamičnim prednostim je pomanjkanje repa povzročilo, da so letala muharjev nagnjena k nenadzorovanim zavijanjem in zastojem.

Bratje Horten so dobili potrditev za izvajanje koncepta avgusta 1943. Najprej so zgradili jadralno letalo brez motorja, znano kot H.IX V1. V1 je imel dolga, tanka pometana krila iz vezanega lesa, da bi prihranili težo. Ta "zvonasta" krila so kompenzirala težavo zehanja. Ker ni imel krmila ali kril, se je H.IX za nadzor oprl na "elevons" (kombinacije kril in dvigal) in dva sklopa spojlerjev. Elevone je bilo mogoče premikati različno, da bi povzročili zvijanje, ali skupaj v isto smer, da bi spremenili višino, medtem ko so spojlerje uporabili za induciranje nihanja.

Po uspešnih preskusih jadralnega letala V1 v Oranienbergu marca 1944 je bil naslednji prototip V2 nameščen z dvema turboreaktivnima motorjema Jumo 004B, nameščenima na obeh straneh kabine v kabini iz varjenih jeklenih cevi. Odlikoval je tudi primitivni izmetni sedež in žleb za spuščanje, nameščen med pristankom, medtem ko je bilo nameščeno preoblikovano podvozje tricikla, ki je letalu omogočalo prenašanje težjih bremen.

Prvi preizkusni let je bil 2. februarja 1945. Letalo v obliki mante je pokazalo gladko vodenje in dobro odpornost proti stojnici. Prototip naj bi v lažnem pasjem boju celo premagal reaktivni lovec Me 262, opremljen z istimi motorji Jumo 004.

Toda postopek testiranja je bil prekinljen 18. februarja, ko je eden od reaktivnih motorjev V2 zagorel in se ustavil sredi leta. Testni pilot Erwin Ziller je v poskusu ponovnega zagona motorja izvedel številne zavoje in se potopil, preden se je očitno oddaljil od hlapov in spiralo letala v tla, kar ga je smrtno ranilo.

Ne glede na to je Goering že odobril proizvodnjo štiridesetih letečih kril, ki naj bi jih prevzelo podjetje Gotha, ki je med drugo svetovno vojno večinoma proizvajalo trenerje in vojaška jadralna letala. Proizvodna letala so bila označena kot Ho 229s ali Go 229s.

Zaradi velike hitrosti Ho 229-menilo se je, da bo serijska različica lahko dosegla 975 kilometrov na uro-so ga namenili za lovca z načrtovano oborožitvijo dveh težkih tridesetmetrskih topov Mark 103. Začela se je gradnja štirih novih prototipov-oštevilčenih V3 do V6-od katerih bi bila dva dvosedežna nočna lovca.

Vendar Ho 229 nikoli ni uspel. Ko so ameriške čete VIII korpusa aprila 1945 prišle v tovarno v Friedrichrodi v Nemčiji, so v različnih fazah razvoja našli le odseke prototipov v pilotski kabini. En sam par ustreznih kril je bil najden 75 milj stran. Najbolj popoln od štirih, prototip V3, je bil skupaj s krili odpremljen nazaj v ZDA v študijo, danes pa ga lahko vidimo v restavraciji v Centru Udvar-Hazy v Muzeju letalstva in vesolja Združenih držav v Chantillyju v Virginiji .

Horteni so bili prerazporejeni za pripravo specifikacij za letalski bombnik z letečim krilcem z zadostnim dosegom za dostavo atomske bombe na vzhodno obalo Združenih držav. Njihove sheme za leteče krilo Horten H.XVIII "Amerika Bomber" niso bile nikoli uresničene, razen verjetno v filmu Kapitan Amerika.

Je bil Ho 229 prikriven borec?

Ena beseda, ki je doslej niste videli v tej zgodovini, je "prikrita" - in to zato, ker ni nobene dokumentacije iz štiridesetih let, ki bi podpirala idejo, da je bilo leteče krilo predvideno biti letalo prikritega tipa. Pa vendar so Horteni naleteli na dejstvo, da je zasnova letečega krila primerna za zmanjšan radarski prerez, idealen za prikrita letala.

Reimer Horten se je po vojni preselil v Argentino in leta 1950 napisal članek za Revista Nacional de Aeronautica trdijo, da bi lesena letala absorbirala radarske valove. Trideset let pozneje, ko je teorija o letalcih prikritega leta postala bolj znana, je Reimer zapisal, da je namerno poskušal iz letečega krila Horten narediti letenje, pri čemer je trdil, da je celo konstrukcijo letalskega ogrodja uporabil s posebno mešanico ogljika, ki absorbira radar, žagovino in lepilo za les, ne da bi o tem obvestil nadrejene. Za ugotavljanje prisotnosti ogljikovega prahu sta bila izvedena dva preskusa, od katerih je eden podprl njegovo trditev, drugi pa ne. Na splošno so zgodovinarji skeptični, da je bil prikritost že od začetka cilj oblikovanja.

Leta 2008 se je Northrop Grumman skupaj s kanalom National Geographic rekonstruiral model Ho 229, ki so ga preizkusili za radarski odboj, nato pa so se spopadli s simulacijo radarskega omrežja British Chain Home. Njihove ugotovitve niso bile nič manj velike - leteča krila bi bila zaznana na razdalji 80 odstotkov od standardne nemške Bf. 109 borec.

Preskuševalci Northropa so poudarili, da bi skupaj s precej večjo hitrostjo Ho 229 to skromno izboljšanje obrambnim borcem dalo premalo časa za učinkovit odziv.

Seveda pa naj bi bila glavna značilnost letečega krila njegova hitrost, ki bi lahko presegel največjo hitrost najboljših zavezniških borcev tistega časa za kar 33 odstotkov. Čas odkrivanja ne bi imel velikega pomena, če bi lahko prehitel vse, kar je bilo poslano, da bi ga prestregli. Poleg tega bi prikritost imela le malo koristi v vlogi borca, ki bi si ga Ho 229 dejansko privoščil, saj zavezniški dnevni lovci, ki segajo nad Nemčijo, niso imeli koristi od lastnih radarjev.

Ho 229 bi bil lahko ogromen nasprotnik na nebu druge svetovne vojne, vendar v resnici letalo še zdaleč ni bilo pripravljeno za množično proizvodnjo do konca vojne. Čeprav se zdi trdo trditi, da je bil Ho 229 namenjen prikritemu letalu, ni dvoma, da je bil pionir oblikovalskih značilnosti, ki se še danes uporabljajo v letalih z majhno opaznostjo.

Sébastien Roblin je magistriral iz reševanja konfliktov na univerzi Georgetown in bil univerzitetni inštruktor za mirovni korpus na Kitajskem. Delal je tudi v izobraževanju, urejanju in preselitvi beguncev v Franciji in ZDA. Trenutno piše o varnostni in vojaški zgodovini za knjigo War Is Boring.


Prvi komercialni letalo opravi testni let

27. julija 1949 je prvi angleški letalo na reaktivni pogon, britanski De Havilland Comet, opravil prvi poskusni let v Angliji. Letalo bi na koncu revolucioniralo letalsko industrijo in skrajšalo čas letenja na polovico, kar bi letalom omogočilo hitrejše vzpenjanje in višje letenje.

Comet je bil nastanek angleškega oblikovalca letal in pionirja letalstva Sir Geoffreyja de Havillanda (1882-1965). De Havilland je začel oblikovati motorna kolesa in avtobuse, a potem, ko je Wilbur Wright leta 1908 demonstriral letalo, se je odločil zgraditi svojega. Brata Wright sta leta 1903 opravila svoj slavni prvi polet v Kitty Hawku v Severni Karolini. De Havilland je leta 1910 uspešno načrtoval in pilotiral svoje prvo letalo, nato pa je leta 1920 začel delati za angleške proizvajalce letal. De Havilland Aircraft Podjetje je postalo vodilno v letalski industriji, znano po razvoju lažjih motorjev in hitrejših in racionalnejših letal.

Leta 1939 je v Nemčiji debitiralo poskusno letalo na reaktivni pogon. Med drugo svetovno vojno je bila Nemčija prva država, ki je uporabila reaktivne lovce. De Havilland je v vojnih letih oblikoval tudi lovska letala. Leta 1944 je bil vitez za svoj prispevek k letalstvu.

Po vojni se je De Havilland osredotočil na komercialna letala, pri čemer je razvil reaktivni motor Comet in Ghost. Po preskusnem letu julija 1949 je Komet opravil še tri leta preizkusnih in urnih letov. Nato je 2. maja 1952 Britanska korporacija za čezmorska letala (BOAC) začela prvo komercialno letalo na svetu s 44-sedežnim kometom 1A, ki je plačal potnike iz Londona v Johannesburg. Komet je lahko potoval 480 milj na uro, kar je bila takrat rekordna hitrost. Vendar je bila začetna komercialna storitev kratkotrajna in zaradi vrste smrtnih nesreč v letih 1953 in 1954 je bila celotna flota prizemljena. Preiskovalci so na koncu ugotovili, da so letala doživela utrujenost kovin zaradi potrebe po večkratnem pritisku in tlaku. Štiri leta pozneje je De Havilland predstavil izboljšani in ponovno certificiran komet, medtem pa sta ameriška proizvajalca letalskih prevoznikov Boeing in Douglas uvedla vsaka hitrejša in učinkovitejša letala in postala prevladujoča sila v industriji. Do zgodnjih osemdesetih let je bila večina kometov, ki jih uporabljajo komercialni letalski prevozniki, prekinjena.


Razvoj reaktivnih motorjev v Nemčiji

Razvoj reaktivnih motorjev se je začel v Nemčiji sredi 30 -ih let in je imel velikodušno podporo podjetja. Posledično je Nemčija prva država, ki je letela z letalom na reaktivni pogon. Vendar so bili reaktivni motorji tehnološka novost in njihova tehnologija je zahtevala številne izboljšave, da so bili pripravljeni za uporabo na terenu. Eden glavnih problemov, ki so vplivali na razvoj reaktivnih motorjev, je bila izpostavljenost velikih delov motorja visokim temperaturam in velikim hitrostim vrtenja. Kompresor in turbina reaktivnih motorjev sta bili še posebej zapleteni in občutljivi sestavni deli, ki delujejo pod velikimi fizikalnimi silami. Nemški razvijalci so se soočali z večjimi težavami kot njihovi kolegi v tujini, saj se je leta 1940 Reich-ovo ministrstvo za zrak odločilo, da bo raziskave in razvoj osredotočilo na bolj napredno obliko motorja-motor z osnim tokom. Na papirju je bila njegova zasnova precej preprosta, v praksi pa so njeni razvijalci pluli večinoma po neznanih vodah.

Pri razvoju nemških reaktivnih motorjev vodita dve veliki podjetji: Jumo in BMW. Medtem je letalsko ministrstvo Reicha z Messerschmittom sklenilo pogodbo za razvoj Luftwaffove generacije lovcev nove generacije - Me 262. BMW je hitreje napredoval in 25. marca 1942 je prototip Me 262 prvič vzletel z dvema razvojnima motorjema BMW P3302. . Letalo je bilo kot varnostni ukrep opremljeno tudi z eno batnim motorjem. To je bila pametna poteza, ker sta kmalu po vzletu oba letala odpovedala. Večji pretoki so bili ugotovljeni v pokvarjenih motorjih in inženirji BMW so bili prisiljeni preoblikovati večino motorja. Naslednji testni let z reaktivnim pogonom je bil 17. julija istega leta z dvema motorjema Jumo 004. This flight was successful, but it was clear that much development work was still necessary.

The test flights conducted in 1942 demonstrated not only the potential of axial-flow engine, but also the immaturity of its technology. The Germans found out the hard way over the next couple of years that revolutionary technology cannot mature overnight, even with large investments and with the availability of highly developed testing facilities. Only in mid summer 1944 the Jumo 004B engine was finally ready for series production, and even then it was imperfect. BMW’s design, the 003 engine, took even longer to develop. Besides suffering from the same problems plaguing the Jumo engine, its fuel flow control was hopelessly ineffective. It was finally ready for production in late summer 1944, and only after its designers adopted the more successful Jumo throttle mechanism.

One interesting and often overlooked advantage jet engines offered Germany was simpler fuel logistics. German jets required no special fuel like piston engines, which required high-octane fuels. The Me 262 was even flown experimentally on crude Romanian oil, experiencing no meaningful problems.

  1. The Germans tried to rush jet technology into service, but by concentrating their efforts from an early stage on the axial-flow design they skipped an important evolutionary stage. Huge investments in axial-flow engine R&D could not overcome all the technical difficulties involved in its development. Money could not buy, for example, the special metals required for the heat-resistant parts. The British started investing large amounts of money in Whittle’s project only in 1940. It helped them close the gap with the Germans only because their engine was less complicated. As a result, at the end of WWII British jet engines were less modern, but more reliable, while German engines were more advanced, but less reliable.
  2. Over-optimism regarding the quick maturing of advance technologies is a striking feature of German WWII leadership. It is especially evident in the jet story. For instance, in 1940 the Air Ministry planned to introduce a jet fighter into operational service by the end of 1942. It was a ridiculous notion as any aeronautical engineer at the time knew well it will take between two and three years to complete the development of a conventional fighter not to mention a revolutionary new type of aircraft.
  • Kay, Anthony L., German Jet Engine and Gas Turbine Development 1930-1945, Shrewsbury: Airlife, 2002.
  • Ethell, Jeffrey & Price, Alfred, World War II Fighting Jets, Annapolis: Naval Institute, 1996.
  • Nahum, Andrew, Frank Whittle: Invention of the Jet., London: Icon Books Ltd, 2004.
  • Neufeld, Michael J., ”Rocket Aircraft and the ‘Turbojet Revolution’. The Luftwaffe’s Quest for High-Speed Flight, 1935-1939”, in Launius, Roger D., Innovation and the Development of Flight, College Station: Texas A+M, 1999.
  • Price, Alfred, The Last Year of the Luftwaffe, May 1944 to May 1945, London: Arms and Armour, 1991.
  • Schabel, Ralf, Die Illusion der Wunderwaffen: die Rolle der Düsenflugzeuge und Flugabwehrraketen in der Rüstungspolitik des Dritten Reiches, München: Oldenbourg, 1994.
  • Smith, Richard J. & Creek, Eddie J., Jet Planes of the Third Reich, Boylston: Monogram, 1982.
  • Gloster E28/39 – 60th Anniversary (6 part film on Youtube) .

About the author: Dr. Daniel Uziel researches different aspects of modern German history, military history, and war and media. In recent years he is researching the history of the German aviation industry. He conducted part of this research as a fellow at the US National Air & Space Museum.


22 Stunning Pictures of the Legendary Me-262, the First Jet Aircraft!

The Messerschmitt Me-262 was the world’s first operational jet-powered fighter aircraft. and also the world’s first mass-produced jet fighter. The first successful flight of a jet Me-262 occurred on the 18th of July, 1942.

The aircraft had two nicknames: Schwalbe (“Swallow”) for the fighter version, or Sturmvogel (“Storm Bird”) for the fighter-bomber version.

Design work started before World War II began, but engine problems, metallurgical problems and top-level interference kept the aircraft from operational status with the Luftwaffe until mid-1944.

The Me-262 was faster and more heavily-armed than any Allied fighter, including the British jet-powered Gloster Meteor.

Pilots of this aircraft claimed a total of 542 allied kills, though claims for the number are often higher than what was actually shot down.

Captured Me 262s were studied and flight tested by the major powers, and ultimately influenced the designs of a number of post-war aircraft such as the North American F-86 Sabre and Boeing B-47 Stratojet.

German Scout Messerschmitt Me-262 A-Ia/U3 “Lady Jess IV”, captured by the Americans. In the background is visible a part of another Messerschmitt ME-262 [Via] Underground manufacture of Me 262s [Bundesarchiv, Bild 141-2738 / CC-BY-SA 3.0] Captured by the British, Messerschmitt Me-262 at the airfield in Lubeck. In the background, on the right – a German Junkers Ju-88 [Via] Technicians inspect a German jet fighter Messerschmitt Me-262V7, serial number 130303 at the airport in Germany after the surrender of Germany [Via] Damaged German fighter Messerschmitt Me-262, captured by US Army in Salzburg. The engine fighter is set with the German anti-tank mine Tellermine 42. Probably this machine was prepared for demolition. Rauchen Verboten means “no smoking” [Via] A pair of Messerschmitt Me-262A-1a, 1st Squadron 51th Bomber Squadron (1.KG51) on the sidelines of the route Munich – Salzburg [Via] Test pilot and an engineer, Lieutenant Colonel Andrei Kochetkov conduct test flights jet aircraft Me-262 [Via] Photo of the same Me-262 as above during the start [Via]

Me-262 is ready to fly [Via]

Jet fighter Messerschmitt Me-262A-1a (III / EJG 2) [Via] Me-262 A, circa 1944 [Bundesarchiv, Bild 141-2497 / CC-BY-SA 3.0] Me-262B-1a/U1 night fighter, Wrknr. 110306, with Neptun radar antenna on the nose and second seat for a radar operator [Via] Pilots of the 44th Fighter Division (Jagdverband 44) and jet fighters Messerschmitt Me-262A-1a [Via] Cockpit of the Me-262 [Via] German experimental fighter Messerschmitt Me-262 A-1a / U4 (serial number 170083), captured by US troops at the factory in Augsburg. This one was equipped with Rheinmetall Mauser BK5 50mm gun 940 rounds per minute, 22 projectile ammunition) [Via] German fighter jets Messerschmitt Me-262B-1a/U1. The first two visible aircraft have installed “Neptun” radar antenna FuG 218. Photo taken after the surrender of Germany [Via] This airframe, Wrknr. 111711, was the first Me-262 to come into Allied hands when its test pilot defected in March 1945. It was subsequently lost in August 1946, the US test pilot parachuting to safety [Via] US Staff Sergeant inspects a crashed German fighter Me-262A-1a bearing the number 󈬆 White” from the 44th Fighter Group (Jagdverband 44, JV 44). The group is a special fighter unit and manned by the best fighter pilots of the Luftwaffe during the last months of World War II [Via] A Jumo 004 engine is being investigated by Aircraft Engine Research Laboratory engineers of the National Advisory Committee for Aeronautics in 1946 [NASA – GPN-2000-000369] Destroyed by Allied bombing, jet fighters Messerschmitt Me-262 [Via] American officers and dismantled Messerschmitt Me-262 at the airfield near Frankfurt. Note the shells of MK-108 gun next to the aircraft [Via] American bomber B-24 “Liberator” (serial number 44-50838) of the 448th Bombardment Group, shot down by R4M missiles of a Messerschmitt Me-262. Only one member of the crew survived, he landed on the enemy territory and was captured [Via] Photo of Luftwaffe Me-262 being shot down by USAF P-51 Mustang of the 8th Air Force, as seen from the P-51’s gun camera [Via]

Orthographically projected diagram of the Messerschmitt Me 262 [Via]


The only surviving Horten Ho 229 – “Hitler’s Stealth fighter”

The Horten Ho 229 is generally known by a few unique names. The plane was called the H.IX, by the Horten Brothers. The identity Ho 229 had been given to the plane by the German Ministry of Aviation. Sometimes, it was also called the Gotha Go 229, because Gothaer Waggonfabrik was the name of the German maker who manufactured the plane.

This plane has been recently called “Hitler’s Stealth fighter”, despite the fact that the plane’s stealth capacities may have been accidental. As per William Green, creator of “Warplanes of the Third Reich,” the Ho 229 was the principal “flying wing” air ship with a jet engine.

It was the primary plane with elements in its design which can be alluded to as stealth innovation, to obstruct the ability of radar to identify the plane.

The leader of the German Luftwaffe, Reichsmarschall Hermann Göring, awarded the German aircraft machine industry what is called 𔄛 X 1000” objective. Goring needed a plane that could transport 1000kg of bombs (2,200 lb), with a scope of 1000 km (620 miles) and speed of 1000 km/h (620 mph).

The Horten Brothers had been taking a shot at flying wing design lightweight gliders since the 1930’s. They thought that the low-drag of the gliders that were made previously could be the base for work that would meet Goring’s requests. The wings of the H.IX plane were produced using two carbon infused plywood boards, stuck to each other with sawdust and charcoal blend.

In 1943, 500,000 Reich Marks had been awarded to the Horten Brothers by Goring to assemble and fly a few models of the all-wing and jet-propelled Horten H IX. The Hortens flew an unpowered glider in March of 1944. The flying machine did not resemble any current plane being used in the Second World War.

It looked fundamentally the same as the cutting edge American B-2 Bomber. Goring was very much inspired with the plan and transferred it from the Hortens to the German aviation organization Gothaer Waggonfabrik.

At Gothaer, the plan experienced a few noteworthy upgrades. The outcome was a jet powered model, the H.IX V2, which was first flown on 2nd February, 1945.

Expelled from the venture, the Horten Brothers were working with the Horten H.XVIII, which was also known as the Amerika Bomber. The Horten H.XVIII was just an effort to satisfy the Germans wishes to manufacture an aircraft that could reach the United States. After a few more experimental flights, the Ho 229 was added to the German Jäger-Notprogramm, or Emergency Fighter Program, on 12th March, 1945.

Work on the next model rendition of the plane, the H.IX V3, finished when the American 3rd Army’s VII Corps came to the Gotha plant in Friederichsroda on 14th April, 1945.

In 2008, Northrop-Grumman, utilizing those designs plans which were available, fabricated a full-size generation of the H.IX V3 by using only those materials which were available in Germany in 1945. They studied the main surviving parts of a Ho 229 V3, which were accommodated at the Smithsonian National Air and Space Museum’s Paul E. Garber Restoration and Storage Facility on the outskirts of Washington DC in Suitland, Maryland.

The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker)

Engineers at Northrop needed to see whether the German aircraft could really be resistant to radar. Northrop tried the non-flying reproduction at its classified radar testing office in Tejon, California. During the testing, the frequencies utilized by British radar offices toward the end of the war were directed towards the reproduction. Tom Dobrenz, a Northrop Grumman stealth master, said with regards to the H.IX, “This design gave them just about a 20% reduction in radar range detection over a conventional fighter of the day.”

When combined with the speed of the H.IX, after being picked up by British Homeland Defense radar, the Royal Air Force would have had only 8 minutes from the time of detecting the airplane before it approached England, rather than the standard 19 minutes.

While the design turned out to be stealthy, it has been contended that it was not intended to be stealthy. There is no written proof in Germany that the design was expected to be what would later be recognized as stealth innovation.

In an article composed by Reimar Horten, broadcast in the May 1950 version of the Argentine aviation magazine Revista Nacional de Aeronautica, Reimar composed, “…with the advent of radar, wood constructions, already considered antique, turned into something modern again. As the reflection of electric waves on metallic surfaces is good, such will be the image on the radar screen on the contrary, on wood surfaces, that reflection is little, these resulting barely visible on the radar.”
In the late 1970s and beginning of the 1980s, data started to break to the media that the United States was doing some important work on airplanes with stealth innovation.

In 1983, Reimar Horten wrote in Nurflugel: Die Geschichte der Horten-Flugzeuge 1933-1960 (Herbert Weishaupt, 1983) that he had wanted to join a blend of sawdust, charcoal, and paste between the layers of wood that framed vast areas of the outside surface of the HIX wing to shield, he said, the “entire plane” from radar, in light of the fact that “the charcoal ought to ingest the electrical waves.

Under this shield the tubular steel, [airframe] and the engines, [would be] “undetectable” [to radar]” (p. 136, creator interpretation).

The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker)

By 1983, the fundamental elements of American stealth innovation were at the point of being public knowledge.

After the war, the latest scientific improvements prompted the idea of planning an airframe that could sidestep radar. It was found that a jet-powered, flying wing design, just like the Horten Ho 229 will have a little radar cross-area to traditional contemporary twin-motor aircraft. This is because the wings were merged into the fuselage and there were no extensive propeller disks or vertical and horizontal tail surfaces to give a locatable radar signature.

Reimar Horten said he blended charcoal dust with the wood paste to soak up electromagnetic waves (radar), which he accepted could shield the aircraft from identification by British early warning ground-based radar that worked at 20 to 30 MHz (the top end of the HF band), which is called Chain Home radar.

Engineers of the Northrop-Grumman Corporation had a great interest on the Ho 229, and a few of them went to the Smithsonian Museum’s office in Silver Hill, Maryland in the 1980s to learn about and study the V3 airframe. A group of engineers from Northrop-Grumman did some electromagnetic experimentation the V3’s multilayer wooden middle-area nose cones.

The cones are 3/4 of an inch (19 mm) thick and made up of thin sheets of veneer. The group inferred that there was surely some type of conducting element within the paste, as the radar signal lessened extensively as it passed through the cone.

So it turns out Hitler was far along with developing a plane that was far ahead of its time!

The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker)

The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker) The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker) The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker) The Horten Ho 229 being restored at Steven F. Udvar-Hazy Center (Credits: Cynrik de Decker)


This is the only surviving prototype


What If? Radical Nazi Jet Flying Wing of World War II

Illustrator Jack Fellows imagines a scenario in which a Horten Ho-229 attacks B-17G bombers in 1946.

The never-built Horten Ho-229 has been the subject of more speculation and myths than any other World War II airplane

Reimar Horten and his older brother Walter were German aircraft homebuilders. Their relatively short aircraft-building careers extended from 1933 until the end of World War II, though they did some minor work in Argentina after the war as expatriate Nazis. Had they lived 40 years later, chances are they would have been busy members of an EAA chapter in Germany, making a living selling kits for their high-performance flying-wing sailplanes.


The first of two H IILs built in Lippstadt in 1937 was flown by Reimar Horten at a glider contest. (Courtesy of Wolfgang Muehlbauer)

The Hortens weren’t Burt Rutans. Talented, yes, but not the aeronautical geniuses they’ve been called by some. They built a series of increasingly sophisticated iterations of the same basic design—graceful sweptwing, tailless gliders, though several of their wings were powered. The Hortens produced a grand total of 44 airframes of their dozen basic designs. History has portrayed them as aeronautical visionaries, for in 1940 Messer­schmitt Me-109 pilot Walter Horten, who scored seven Battle of Britain victories as Adolf Galland’s wingman, proposed putting a pair of Germany’s new axial-flow jet engines into a Horten glider. The result was the Ho IX. (Brother Reimar was the aero­dynami­cist and designer Walter was the facilitator, eventually holding an important Luftwaffe position that allowed him to divert government supplies, staff and facilities for his brother.)

The jets were first going to be two BMW 003s, but when they underperformed the Hortens switched to Junkers Jumo 004Bs. The Ho IX V2 (Versuch 2, or Test 2—the V1 was an unpowered research glider) officially flew three times, crashing fatally at the end of the third flight when one of its two Jumos failed.

No Horten IX ever flew again, but the brothers had undeniably built and tested the world’s first turbojet flying wing. The Ho IX V2 first flew in March 1945, more than three and a half years before Northrop’s eight-jet YB-49 flying-wing bomber took off. In a number of ways, the Hortens were well ahead of Jack Northrop and his engineers, though Northrop never admitted that. After the war, it was suggested to Northrop that he hire the brothers. “Forget it, they’re just glider designers,” he said condescendingly. The success of the Ho IX was pointed out to him, but Northrop dismissed it as a Gotha design, not a Horten.

Northrop was wrong, but the source of his confusion was the fact that the Luft­waffe, knowing the tiny Horten garage operation could never mass-produce twin-engine jet fighter-bombers, turned the project over to Gotha, a large railroad car manufacturing company with aircraft-building experience. As a result, the Horten jet has come down to us with a confusing suite of names. The actual sole jet-powered wing that flew was the Ho IX V2. The German air ministry (Reichsluftfahrtministerium, or RLM) gave the project an official make and model designation—Ho-229. Because production was assigned to Gotha, some sources still refer to the airplane as a Go-229. Many Luftwaffe aircraft were built by a variety of manufacturers, but a Junkers remained a Ju, a Heinkel an He, a Dornier a Do no matter who actually manufactured it, so “Go-229” is a misnomer. The Smithsonian’s National Air and Space Museum, citing the RLM designation, calls a major artifact in its collection that is about to undergo serious conservation a Horten 229. This despite the fact that no production Horten 229 ever existed what the Smithsonian has is the never-completed Ho IX V3 built by Gotha.

It bears mentioning that neither Northrop nor the Hortens invented flying wings. Both the concept and actual flying wings have been around since the 1910s. In fact, by the late 1920s there had been enough experiments with flying wings that the configu­ration was considered passé, and both Jack Northrop and the Hortens were late to the party.

The Hortens have also been credited with designing and building the world’s first stealth fighter. That is a more difficult claim to support. It’s a popular fiction in the “Hitler’s wonder weapons” community, and it got a boost in a 2009 Northrop Grumman–sponsored film, Hitler’s Stealth Fighter, a National Geographic documentary. The doc tried to show that a modern replica of the National Air and Space Museum’s Ho IX V3 bombarded by microwaves revealed moderate radar-deflecting properties. Northrop Grumman’s prototyping shop built the replica for $250,000. That’s a bargain for an hour-long video broadcast on the History Channel that is still being discussed by what some call the “Napkinwaffe”—a dig at where the plans for some of the Luftwaffe’s fantasy fighters were first sketched. (Engineering drawings for the Horten jet reveal this to be not far from the truth.)


Test pilot Erwin Ziller starts the Ho IX V2’s engines at Oranienburg in February 1945. Ziller was killed when the V2 lost an engine and crashed during its third test flight. (National Air and Space Museum)

Northrop Grumman built the Horten replica entirely of wood, its plywood skins layered with radar-absorbent carbon-­impregnated glue. Only the externally radar-visible instrument panel backing and first-stage compressor disks were metal. Yet the Horten brothers’ original airplane also had an 11-foot-wide center section made of welded steel tubing, and it carried two turbojet engines. Neither of these were part of the Northrop Grumman replica. It could be argued that all this metal might have reflected at least some microwave energy that penetrated the plywood. But Northrop Grumman felt that their special glue made the replica totally opaque to radar.

The replicators also left out the original Ho IX V3’s eight large aluminum fuel tanks. Nor did Northrop Grumman include the underwing bombs that would have been necessary for any attack on a radar-defended target. Externally racked ordnance destroys any semblance of stealth. The Nat Geo film ended up suggesting that an all-wood Horten might have been able to do a fly-by of Britain’s by then obsolete Chain Home low-frequency radar array, but it wouldn’t have been able to bomb anything.

Narration over the film says that it reveals “just how close Nazi engineers were to unleashing a jet that some say could have changed the course of the war.” Not bloody likely, if only because by that time, the Germans were literally out of gas.

The heart of the Horten stealth assertion is a claim by the brothers, made long after the war ended, that they indeed had intended to fasten the layers of the Ho-229’s plywood sheathing with glue mixed with radar-absorbing charcoal. Perhaps they did mean to do that, but the first mention of this plan came in a 1983 book written by Reimar, at a time when the basics of U.S. stealth technology were becoming public knowledge. There is no mention of any attempt to achieve stealthy properties for the Ho-229 by anybody involved in the actual fabrication of the prototypes.

NASM’s restoration facility ran extensive digital-microscopy, X-ray diffraction and Fourier-transfer spectroscopy tests on the wooden structure of their Horten aircraft’s wing and found no evidence of any carbon or charcoal impregnation of the glue. The black specks that Northrop Grumman had assumed were evidence of the Hortens’ attempt to create a radar blanket were found to be simply oxidized wood.

Reimar Horten originally planned to sheathe the Ho IX in aluminum, which hardly suggests that he had stealth as an objective. It was only when he discovered to his surprise that the Messerschmitt Me-163 rocket plane was covered in plywood that he realized high speed didn’t rule out using wood. He then switched to more easily obtainable plywood veneer, but for reasons that had nothing to do with its radar attenuation and everything to do with its availability.

It’s also worth noting that the Ho-229 was intended to be a day fighter, a bomber interceptor, though eventually, as was true of so many Luftwaffe fantasy fighters, it was to undertake a variety of other roles. Walter Horten had originally advocated jet power because, as a fighter pilot himself, he wanted to build a better airplane than the Focke Wulf Fw-190, which he considered to be an inferior, spin-prone design.

So why would stealth have been a criterion, if an Ho-229 would never confront radar? It wasn’t. Hitler’s “stealth fighter” was simply intended to be Hitler’s aerodynamically efficient, fast, maneuverable fighter.

How did the Hitler’s stealth fighter myth take root? Certainly there’s fertile ground upon which such legends can be sown among the model builders and war gamers who love nothing more than mysterious Luftwaffe wonder weapons that would have reversed the course of the war had it only lasted another month. But none seem to understand the years-long prototyping/testing/production process that is a necessary part of bringing a sophisticated aircraft from napkin sketch to combat. Exactly three years and a day passed between the Messerschmitt Me-262 twin-jet’s first flight and the beginning of its operational readiness. Following such a schedule, the Ho-229 would have been ready for combat in early 1948.

The Ho IX, precursor of the 229, was the work of a garage shop. The V1 and V2 versions were built in what was essentially a three-car workshop, out of largely unairworthy structural material. The center section steel tubing was much like what today suffices for building trade electrical conduit, and the Hortens were notorious for using household-grade ply­wood veneer for their airplanes’ external sheathing.

How professional were the Hortens? Some of their work raises questions. Walter Horten was assigned the job of calculating the V2’s center of gravity, for example, which he did using a steel measuring tape. Unfortunately, he never noticed that the first 10 centimeters of the tape had broken off, so his false measurements determined that the airplane needed substantial ballast in the nose. Since the CG was 10 centimeters off, the test pilot assigned to the first flight found that he could barely keep the airplane aloft with full back stick, and when he tried to flare for landing the airplane hit so hard that it badly damaged the gear. And the Hortens’ fabricators welded and rewelded the V2’s center section as the engine choice flip-flopped between BMW and Junkers, which created heat stresses that no experienced aircraft builder would have allowed. Skilled welders would have cut out and rebuilt entire sections of the structure.


The uncompleted Ho IX V3 at war’s end. (Nacionalni arhiv)

The Hortens also needed to adapt cast-off components to their Ho IX airframe, which led to its ungainly nosewheel. The airplane’s main gear is fashioned from Me-109 parts, and the enormous nosewheel, almost 5 feet in diameter, is the tailwheel, tire and retraction mechanism from a Heinkel He-177 Greif, a benighted heavy bomber. It was a fortui­tous choice nonetheless. The oversize nosewheel put the Ho IX at a 7-degree angle of incidence at rest, which facilitated takeoff without requiring the forceful rotation other Horten designs had needed.

After the war, a number of Horten designs were examined by the Allies, initially the British. If any conspiracy theorists noticed the byline at the beginning of this article, they’ll by now be hyperventilating, for the “Wilkinson Report,” written by a committee of British aviation authorities headed by soaring expert Kenneth Wilkinson, was supposedly highly critical of the Hortens. (If Kenneth and I are related, it is to the same degree that Henry and Harrison Ford are.)

British aviation writer Lance Cole, apparently a serious Horten conspira­cist, wrote that the Wilkinson Report was “a way of helping to shield the reality of the Horten achievement so that greater powers could seize the ideas and keep them unseen for decades…[it] dismissed their ideas and works as apparent flights of fancy stemming, it seemed, from what felt like a British attitude of the Hortens being men ‘without the proper background.'”

I can find none of this in the evenhanded, rigorous, authori­tative, technical 60-page Wilkinson Report. The paper does point out that British engineers tended to trust wind-tunnel data more than they did inflight assessments, but admits the Hortens had no access to such a tunnel. It calls the Hortens’ careers “a remarkable record of progress in spite of [such] obstacles.”

One thing that did baffle Wilkinson’s committee was that so little of Reimar Horten’s work was of the slightest use to the German war effort. Reimar was far more interested in record-­setting and competition gliders, and he continued to design and build them throughout the war. Some historians, in fact, think that he viewed the jet wing as a “flying résumé” that would help him get a job in the U.S. or Britain after the war. Reimar would have loved to carry on his career in the States. Despite membership in the Nazi Party and his work as a Luftwaffe assault-glider instructor, he had first tried to emigrate to America in 1938 but had been refused an exit visa since he was thought to have had access to classified information.

Why a flying wing? What’s wrong with the conventional designs that have served so well since the early 1900s? Certainly there have been some useful variations—canards, pushers, semi-tailless deltas, blended wing/body proposals, even Vin­cent Burnelli’s perennial lifting-fuselage concept—but the pure flying wing has always been an outlier. What is its appeal?

Theoretically, the advantages of a flying wing are sub­stantial. A conventional design—a Boeing 777, a Cess­­na Skyhawk, an F-22 Raptor, you name it—has wings that contribute lift despite inevitable induced and parasitic drag…plus a fuselage, engine nacelle(s) and an empennage that contribute nothing but drag. Zero lift. Indeed a conventional horizontal stabilizer often adds negative lift—down­force—to an airplane. Yes, the fuselage can carry passengers, cargo or ordnance, but so can a flying wing.

One of the major functions of a fuselage is to support the empennage that provides pitch and yaw control for a conventional airplane. A flying wing totally eliminates the drag of an aft fuselage and empennage. In fact, every part of a flying wing is a lifting surface. An all-wing aircraft also allows for the efficiency of span-loading. Much of a conventional airplane’s weight is concentrated near its centerline, hence the videos of bendy-­wing Boeing Dream­liners looking as though they’re trying to clap hands above their fuselages. The forces concentrated at the wing/fuselage juncture of a conventional airplane are enormous, while a flying wing can spread the entire load from wingtip to wingtip, thus allowing for a lighter and more efficient structure. The weight is spread out where the lift is, so a flying wing can have a large, efficient, high-­aspect-ratio span without requiring a heavy framework to support it.

For a stealthy airplane, a true flying wing has a distinct advantage: It does away with all radar-reflective vertical surfaces, particularly stabilizers and rudders. This, plus its wooden construction and lack of radar-reflecting prop discs, is what gave Northrop Grum­man’s Ho IX replica its comparatively small radar cross-­section, not a miracle glue.

The disadvantage of a flying wing is its natural instability, with no tail to provide counterbalance in pitch and yaw. The Hortens overcame much of this with enlightened wing, airfoil and control-­surface design, but their airplanes still exhibited the classic flying-­wing waddle, semi-technically termed Dutch roll. The Ho IX V2’s flights had already revealed moderate lateral instability. It would have made the Ho-229 a dreadful gun platform as a fighter and a handful as a bomber. (This was the characteristic that doomed the North­rop YB-49 flying wing in its competition with what became the Convair B-36 bomb-run accuracy was impossible to achieve when yaw/roll coupling determined the meandering flight path. Nor did it help that one YB-49 went out of control and crashed fatally during stall testing in June 1948.)

By the time Gotha took over the Ho-229 project, the Hor­ten brothers had lost interest and moved on to their planned masterpiece—a six-turbojet flying wing “Amerika Bomber.” The Ho XVIII never was built, but it filled another niche in the Napkinwaffe. Some still say the Amerika Bomber (several German airframers were racing to build one) was intended to drop an atomic bomb on New York. Fortunately, the Germans would never have been able to build such a weapon, having lost their Norwegian deuterium source, but they did have the capability to put together a dirty bomb—a large conventional bomb encased in strongly radioactive materi­al that would have polluted a wide area with radiation.

Though Northrop wanted nothing to do with the Horten brothers, the company did acquire several of their gliders for research after WWII, leading conspiracists to claim that Northrop stole the Hortens’ secrets for its own flying wings. Actually, Northrop depicted an Ho VI glider in postwar avia­tion magazine ads as an example of “one of the Nazi attempts to adapt U.S. flying-wing design for eventual mili­tary use.”

The Smithsonian’s Ho IX V3 was brought to America as part of Operation Seahorse, a U.S. Navy counterpart to the better-known Operation Paperclip campaign to acquire as many interesting Luftwaffe aircraft as possible. But it was never flown and in fact was only half-­completed. It was first assessed at the Royal Aircraft Establishment, in Britain—the source of the Wilkinson Report data—and was then sent to both Wright and Freeman fields for Army Air Forces scrutiny. The jet wing ended up stored outdoors in Chicago at a facility that was intended to become a national air museum. In 1952 the Smithsonian acquired the airplane, though it was by then badly beaten up by numerous moves and exposure to the weather. It was moved once more to “a secret government warehouse,” according to published reports. That warehouse was actually the Smithsonian’s quite unsecret Suit­land, Md., restoration facility, where it stayed for 60-plus years, part of that time stored in an open wooden shed.


The V3’s center section is currently undergoing preservation at the National Air and Space Museum’s Udvar-Hazy Center. (National Air and Space Museum)

The artifact is in sad shape today, much of its plywood sheathing delaminated and rotting, its metal frame and landing gear corroded, and parts missing. NASM has it on the short list for major work, and the V3 can currently be seen at the museum’s restoration facility in the Udvar-Hazy Center at Dulles Airport.

That work will not be restoration but conservation: stopping the rot and corrosion, cleaning up the airframe and assembling the center section and outer wings into a single unit. Those wings may or may not have been part of the V3. Only one wing came to the U.S. with the center section, and another was later found some distance from the Gotha shop.

The Hortens’ last hurrah took place without their participation. In July 1947, there was a notorious occurrence at Roswell, N.M, known forever after as the “Roswell Inci­dent.” It allegedly involved the crash of a flying saucer and the snatching by the Army Air Forces of the bodies of three aliens aboard it. The Roswell Incident engendered decades’ worth of tabloids portraying the gourd-headed ETs perhaps still stored in freezers in a heavily guarded Area 51 hangar. The government tried to explain away the crash by saying it had been a high-­altitude weather balloon it was actually a secret surveillance balloon intended to keep track of Soviet atomic bomb testing. But some observers with more specialized knowledge had an intriguing theory.

In 1937 Reimar Horten decided that the ultimate flying-wing shape would be a parabola—a wing with a near-circular leading edge planform, which would provide the minimum induced drag and maximum lift. The Hortens built just one parabola-­wing glider but never flew it the airplane was torched after warping and becoming unglued during winter storage. But wait, there’s more…supposedly the AAF found out about the Horten parabola wing and decided to build a powered version to secretly test Reimar’s theory. It was this airplane, looking uncannily like two-thirds of a flying saucer, that crashed in New Mexico in 1947.

Nobody has yet explained the aliens, however.

For further reading, contributing editor Stephan Wilkinson recommends: The Horten Brothers and Their All-Wing Aircraft, by David Myhra and Horten Ho 229 Spirit of Thuringia: The Horten All-Wing Jet Fighter, by Andrei Shepelev and Huib Ottens.

This feature originally appeared in the November 2016 issue of Letalska zgodovina Revija. Subscribe today!


Postwar

With the end of hostilities in May 1945, the Allied powers scrambled to claim the remaining Me 262s. Studying the revolutionary aircraft, elements were subsequently incorporated into future fighters such as the F-86 Sabre and MiG-15. In the years after the war, Me 262s were used in high-speed testing. Though German production of the Me 262 ended with the conclusion of the war, the Czechoslovak government continued building the aircraft as the Avia S-92 and CS-92. These remained in service until 1951.